Difference in the relative response of the alanine dosimeter to megavoltage x-ray and electron beams.
نویسندگان
چکیده
In order to increase the usefulness of the alanine dosimeter as a tool for quality assurance measurements in radiotherapy using MV x-rays, the response with respect to the dose to water needs to be known accurately. This quantity is determined experimentally relative to (60)Co for 4, 6, 8, 10, 15 and 25 MV x-rays from two clinical accelerators. For the calibration, kQ factors for ionization chambers with an uncertainty of 0.31% obtained from calorimetric measurements were used. The results, although not inconsistent with a constant difference in response for all MV x-ray qualities compared to (60)Co, suggest a slow decrease from approximately 0.996 at low energies (4-6 MV) to 0.989 at the highest energy, 25 MV. The relative uncertainty achieved for the relative response varies between 0.35% and 0.41%. The results are confirmed by revised experimental data from the NRC as well as by Monte Carlo simulations using a density correction for crystalline alanine. By comparison with simulated and measured data, also for MeV electrons, it is demonstrated that the weak energy dependence can be explained by a transition of the alanine dosimeter (with increasing MV values) from a photon detector to an electron detector. An in-depth description of the calculation of the results and the corresponding uncertainty components is presented in an appendix for the interested reader. With respect to previous publications, the uncertainty budget had to be modified due to new evidence and to changes of the measurement and analysis method used at PTB for alanine/ESR.
منابع مشابه
Evaluation of Gold Nanoparticle Size Effect on Dose Enhancement Factor in Megavoltage Beam Radiotherapy Using MAGICA Polymer Gel Dosimeter
Background: Gold nanoparticles (GNPs) are among the most promising radiosensitive materials in radiotherapy. Studying the effective sensitizing factors such as nanoparticle size, concentration, surface features, radiation energy and cell type can help to optimize the effect and possible clinical application of GNPs in radiation therapy. In this study, the radiation sensitive polymer gel was use...
متن کاملMegavoltage X-ray Dose Enhancement with Gold Nanoparticles in Tumor Bearing Mice
One of the applications of gold nanoparticles (GNPs) in medicine is radiation dose-enhancing effect. Although there are many simulations, in vitro and in vivo evidence that GNPs can enhance significantly the radiation dose effect of orthovoltage beams. These beams compared with megavoltage (MV) beams, have limited applications in radiotherapy. In order to evaluate GNPs radiosensitization perfor...
متن کاملVerification of dose rate and energy dependence of MAGICA polymer gel dosimeter with electron beams
Background: The purpose of this study was to evaluate the dependency of MAGICA polymer gel dosimeter response (R2) on different electron energies as well as on different mean dose rate for a standard clinically used linear accelerator. Materials and Methods: The sensitivity of the dosimeter was represented by the slope of calibration curve in the linear region measured for each modalit...
متن کاملWater equivalence of micelle gels for x-ray beams
Micelle gel is a radiochromic hydrogel with the potential to be used as a three dimensional (3D) radiation dosimeter. Since an ideal dosimeter should present water equivalent properties, in this study the water equivalence of two formulations of micelle gel has been investigated by calculating electron density, effective atomic number, fractional interaction probabilities, mass attenuation coef...
متن کاملEvaluation of Electron Contamination in Cancer Treatment with Megavoltage Photon Beams: Monte Carlo Study
Background: Megavoltage beams used in radiotherapy are contaminated with secondary electrons. Different parts of linac head and air above patient act as a source of this contamination. This contamination can increase damage to skin and subcutaneous tissue during radiotherapy. Monte Carlo simulation is an accurate method for dose calculation in medical dosimetry and has an important role in opt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physics in medicine and biology
دوره 58 10 شماره
صفحات -
تاریخ انتشار 2013